English Language flag
// Log In
// CVSweb
Project: FreeWRT
// Summary // Activity // Search // Tracker // Lists // News // SCM // Wiki

SCM Repository

ViewVC logotype

Contents of /branches/freewrt_1_0/tools/paxmirabilis/src/tables.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3816 - (show annotations) (download)
Wed Oct 29 17:58:40 2008 UTC (5 years, 3 months ago) by tg
File MIME type: text/plain
File size: 37980 byte(s)
FreeWRT trunk:

• merge new MirCPIO upstream, changes:
  – allow multiple -v options not only for tar but also for cpio, pax
  – add code to work around broken archives such as the CPIO archive inside
    Fedora Core 4 glibc-common-2.3.6-3.i386.rpm which carry the actual data
    of hardlinks not in the first but a later (here, the last) occurence of
    the file in question: iff hardlinking succeeds (no cross-device!), size
    of the linked files is 0, size of the archive member is greater than 0,
    we are extracting, but not to stdout, proceed writing out the data.
• add mircpio, mirpax, mirtar links in order to prevent interfering with
  native tools when both are in $PATH (this has worked since the last
  update, can be used now)

FreeWRT 1.0-stable:

• merge paxmirabilis complete from trunk

note: untested

1 /* $OpenBSD: tables.c,v 1.25 2007/09/02 15:19:08 deraadt Exp $ */
2 /* $NetBSD: tables.c,v 1.4 1995/03/21 09:07:45 cgd Exp $ */
3
4 /*-
5 * Copyright (c) 2005 Thorsten Glaser <tg@66h.42h.de>
6 * Copyright (c) 1992 Keith Muller.
7 * Copyright (c) 1992, 1993
8 * The Regents of the University of California. All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * Keith Muller of the University of California, San Diego.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/stat.h>
41 #include <sys/fcntl.h>
42 #include <stdio.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <errno.h>
46 #include <stdlib.h>
47 #include "pax.h"
48 #include "tables.h"
49 #include "extern.h"
50
51 __SCCSID("@(#)tables.c 8.1 (Berkeley) 5/31/93");
52 __RCSID("$MirOS: src/bin/pax/tables.c,v 1.8 2007/10/23 20:07:42 tg Exp $");
53
54 /*
55 * Routines for controlling the contents of all the different databases pax
56 * keeps. Tables are dynamically created only when they are needed. The
57 * goal was speed and the ability to work with HUGE archives. The databases
58 * were kept simple, but do have complex rules for when the contents change.
59 * As of this writing, the posix library functions were more complex than
60 * needed for this application (pax databases have very short lifetimes and
61 * do not survive after pax is finished). Pax is required to handle very
62 * large archives. These database routines carefully combine memory usage and
63 * temporary file storage in ways which will not significantly impact runtime
64 * performance while allowing the largest possible archives to be handled.
65 * Trying to force the fit to the posix database routines was not considered
66 * time well spent.
67 */
68
69 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */
70 static HRDFLNK **fltab = NULL; /* hard link table for anonymisation */
71 static FTM **ftab = NULL; /* file time table for updating arch */
72 static NAMT **ntab = NULL; /* interactive rename storage table */
73 static DEVT **dtab = NULL; /* device/inode mapping tables */
74 static ATDIR **atab = NULL; /* file tree directory time reset table */
75 static DIRDATA *dirp = NULL; /* storage for setting created dir time/mode */
76 static size_t dirsize; /* size of dirp table */
77 static long dircnt = 0; /* entries in dir time/mode storage */
78 static int ffd = -1; /* tmp file for file time table name storage */
79
80 static DEVT *chk_dev(dev_t, int);
81
82 /*
83 * hard link table routines
84 *
85 * The hard link table tries to detect hard links to files using the device and
86 * inode values. We do this when writing an archive, so we can tell the format
87 * write routine that this file is a hard link to another file. The format
88 * write routine then can store this file in whatever way it wants (as a hard
89 * link if the format supports that like tar, or ignore this info like cpio).
90 * (Actually a field in the format driver table tells us if the format wants
91 * hard link info. if not, we do not waste time looking for them). We also use
92 * the same table when reading an archive. In that situation, this table is
93 * used by the format read routine to detect hard links from stored dev and
94 * inode numbers (like cpio). This will allow pax to create a link when one
95 * can be detected by the archive format.
96 */
97
98 /*
99 * lnk_start
100 * Creates the hard link table.
101 * Return:
102 * 0 if created, -1 if failure
103 */
104
105 int
106 lnk_start(void)
107 {
108 if (ltab != NULL)
109 return(0);
110 if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
111 paxwarn(1, "Cannot allocate memory for hard link table");
112 return(-1);
113 }
114 return(0);
115 }
116
117 /*
118 * chk_lnk()
119 * Looks up entry in hard link hash table. If found, it copies the name
120 * of the file it is linked to (we already saw that file) into ln_name.
121 * lnkcnt is decremented and if goes to 1 the node is deleted from the
122 * database. (We have seen all the links to this file). If not found,
123 * we add the file to the database if it has the potential for having
124 * hard links to other files we may process (it has a link count > 1)
125 * Return:
126 * if found returns 1; if not found returns 0; -1 on error
127 */
128
129 int
130 chk_lnk(ARCHD *arcn)
131 {
132 HRDLNK *pt;
133 HRDLNK **ppt;
134 u_int indx;
135
136 if (ltab == NULL)
137 return(-1);
138 /*
139 * ignore those nodes that cannot have hard links
140 */
141 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
142 return(0);
143
144 /*
145 * hash inode number and look for this file
146 */
147 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
148 if ((pt = ltab[indx]) != NULL) {
149 /*
150 * its hash chain in not empty, walk down looking for it
151 */
152 ppt = &(ltab[indx]);
153 while (pt != NULL) {
154 if ((pt->ino == arcn->sb.st_ino) &&
155 (pt->dev == arcn->sb.st_dev))
156 break;
157 ppt = &(pt->fow);
158 pt = pt->fow;
159 }
160
161 if (pt != NULL) {
162 /*
163 * found a link. set the node type and copy in the
164 * name of the file it is to link to. we need to
165 * handle hardlinks to regular files differently than
166 * other links.
167 */
168 arcn->ln_nlen = strlcpy(arcn->ln_name, pt->name,
169 sizeof(arcn->ln_name));
170 /* XXX truncate? */
171 if ((size_t)arcn->nlen >= sizeof(arcn->name))
172 arcn->nlen = sizeof(arcn->name) - 1;
173 if (arcn->type == PAX_REG)
174 arcn->type = PAX_HRG;
175 else
176 arcn->type = PAX_HLK;
177
178 /*
179 * if we have found all the links to this file, remove
180 * it from the database
181 */
182 if (--pt->nlink <= 1) {
183 *ppt = pt->fow;
184 (void)free((char *)pt->name);
185 (void)free((char *)pt);
186 }
187 return(1);
188 }
189 }
190
191 /*
192 * we never saw this file before. It has links so we add it to the
193 * front of this hash chain
194 */
195 if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
196 if ((pt->name = strdup(arcn->name)) != NULL) {
197 pt->dev = arcn->sb.st_dev;
198 pt->ino = arcn->sb.st_ino;
199 pt->nlink = arcn->sb.st_nlink;
200 pt->fow = ltab[indx];
201 ltab[indx] = pt;
202 return(0);
203 }
204 (void)free((char *)pt);
205 }
206
207 paxwarn(1, "Hard link table out of memory");
208 return(-1);
209 }
210
211 /*
212 * purg_lnk
213 * remove reference for a file that we may have added to the data base as
214 * a potential source for hard links. We ended up not using the file, so
215 * we do not want to accidently point another file at it later on.
216 */
217
218 void
219 purg_lnk(ARCHD *arcn)
220 {
221 HRDLNK *pt;
222 HRDLNK **ppt;
223 u_int indx;
224
225 if (ltab == NULL)
226 return;
227 /*
228 * do not bother to look if it could not be in the database
229 */
230 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
231 (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
232 return;
233
234 /*
235 * find the hash chain for this inode value, if empty return
236 */
237 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
238 if ((pt = ltab[indx]) == NULL)
239 return;
240
241 /*
242 * walk down the list looking for the inode/dev pair, unlink and
243 * free if found
244 */
245 ppt = &(ltab[indx]);
246 while (pt != NULL) {
247 if ((pt->ino == arcn->sb.st_ino) &&
248 (pt->dev == arcn->sb.st_dev))
249 break;
250 ppt = &(pt->fow);
251 pt = pt->fow;
252 }
253 if (pt == NULL)
254 return;
255
256 /*
257 * remove and free it
258 */
259 *ppt = pt->fow;
260 (void)free((char *)pt->name);
261 (void)free((char *)pt);
262 }
263
264 /*
265 * lnk_end()
266 * pull apart a existing link table so we can reuse it. We do this between
267 * read and write phases of append with update. (The format may have
268 * used the link table, and we need to start with a fresh table for the
269 * write phase
270 */
271
272 void
273 lnk_end(void)
274 {
275 int i;
276 HRDLNK *pt;
277 HRDLNK *ppt;
278
279 if (ltab == NULL)
280 return;
281
282 for (i = 0; i < L_TAB_SZ; ++i) {
283 if (ltab[i] == NULL)
284 continue;
285 pt = ltab[i];
286 ltab[i] = NULL;
287
288 /*
289 * free up each entry on this chain
290 */
291 while (pt != NULL) {
292 ppt = pt;
293 pt = ppt->fow;
294 (void)free((char *)ppt->name);
295 (void)free((char *)ppt);
296 }
297 }
298 return;
299 }
300
301 /*
302 * modification time table routines
303 *
304 * The modification time table keeps track of last modification times for all
305 * files stored in an archive during a write phase when -u is set. We only
306 * add a file to the archive if it is newer than a file with the same name
307 * already stored on the archive (if there is no other file with the same
308 * name on the archive it is added). This applies to writes and appends.
309 * An append with an -u must read the archive and store the modification time
310 * for every file on that archive before starting the write phase. It is clear
311 * that this is one HUGE database. To save memory space, the actual file names
312 * are stored in a scratch file and indexed by an in-memory hash table. The
313 * hash table is indexed by hashing the file path. The nodes in the table store
314 * the length of the filename and the lseek offset within the scratch file
315 * where the actual name is stored. Since there are never any deletions from
316 * this table, fragmentation of the scratch file is never a issue. Lookups
317 * seem to not exhibit any locality at all (files in the database are rarely
318 * looked up more than once...), so caching is just a waste of memory. The
319 * only limitation is the amount of scratch file space available to store the
320 * path names.
321 */
322
323 /*
324 * ftime_start()
325 * create the file time hash table and open for read/write the scratch
326 * file. (after created it is unlinked, so when we exit we leave
327 * no witnesses).
328 * Return:
329 * 0 if the table and file was created ok, -1 otherwise
330 */
331
332 int
333 ftime_start(void)
334 {
335
336 if (ftab != NULL)
337 return(0);
338 if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
339 paxwarn(1, "Cannot allocate memory for file time table");
340 return(-1);
341 }
342
343 /*
344 * get random name and create temporary scratch file, unlink name
345 * so it will get removed on exit
346 */
347 memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
348 if ((ffd = mkstemp(tempfile)) < 0) {
349 syswarn(1, errno, "Unable to create temporary file: %s",
350 tempfile);
351 return(-1);
352 }
353 (void)unlink(tempfile);
354
355 return(0);
356 }
357
358 /*
359 * chk_ftime()
360 * looks up entry in file time hash table. If not found, the file is
361 * added to the hash table and the file named stored in the scratch file.
362 * If a file with the same name is found, the file times are compared and
363 * the most recent file time is retained. If the new file was younger (or
364 * was not in the database) the new file is selected for storage.
365 * Return:
366 * 0 if file should be added to the archive, 1 if it should be skipped,
367 * -1 on error
368 */
369
370 int
371 chk_ftime(ARCHD *arcn)
372 {
373 FTM *pt;
374 int namelen;
375 u_int indx;
376 char ckname[PAXPATHLEN+1];
377
378 /*
379 * no info, go ahead and add to archive
380 */
381 if (ftab == NULL)
382 return(0);
383
384 /*
385 * hash the pathname and look up in table
386 */
387 namelen = arcn->nlen;
388 indx = st_hash(arcn->name, namelen, F_TAB_SZ);
389 if ((pt = ftab[indx]) != NULL) {
390 /*
391 * the hash chain is not empty, walk down looking for match
392 * only read up the path names if the lengths match, speeds
393 * up the search a lot
394 */
395 while (pt != NULL) {
396 if (pt->namelen == namelen) {
397 /*
398 * potential match, have to read the name
399 * from the scratch file.
400 */
401 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
402 syswarn(1, errno,
403 "Failed ftime table seek");
404 return(-1);
405 }
406 if (read(ffd, ckname, namelen) != namelen) {
407 syswarn(1, errno,
408 "Failed ftime table read");
409 return(-1);
410 }
411
412 /*
413 * if the names match, we are done
414 */
415 if (!strncmp(ckname, arcn->name, namelen))
416 break;
417 }
418
419 /*
420 * try the next entry on the chain
421 */
422 pt = pt->fow;
423 }
424
425 if (pt != NULL) {
426 /*
427 * found the file, compare the times, save the newer
428 */
429 if (arcn->sb.st_mtime > pt->mtime) {
430 /*
431 * file is newer
432 */
433 pt->mtime = arcn->sb.st_mtime;
434 return(0);
435 }
436 /*
437 * file is older
438 */
439 return(1);
440 }
441 }
442
443 /*
444 * not in table, add it
445 */
446 if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
447 /*
448 * add the name at the end of the scratch file, saving the
449 * offset. add the file to the head of the hash chain
450 */
451 if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
452 if (write(ffd, arcn->name, namelen) == namelen) {
453 pt->mtime = arcn->sb.st_mtime;
454 pt->namelen = namelen;
455 pt->fow = ftab[indx];
456 ftab[indx] = pt;
457 return(0);
458 }
459 syswarn(1, errno, "Failed write to file time table");
460 } else
461 syswarn(1, errno, "Failed seek on file time table");
462 } else
463 paxwarn(1, "File time table ran out of memory");
464
465 if (pt != NULL)
466 (void)free((char *)pt);
467 return(-1);
468 }
469
470 /*
471 * Interactive rename table routines
472 *
473 * The interactive rename table keeps track of the new names that the user
474 * assigns to files from tty input. Since this map is unique for each file
475 * we must store it in case there is a reference to the file later in archive
476 * (a link). Otherwise we will be unable to find the file we know was
477 * extracted. The remapping of these files is stored in a memory based hash
478 * table (it is assumed since input must come from /dev/tty, it is unlikely to
479 * be a very large table).
480 */
481
482 /*
483 * name_start()
484 * create the interactive rename table
485 * Return:
486 * 0 if successful, -1 otherwise
487 */
488
489 int
490 name_start(void)
491 {
492 if (ntab != NULL)
493 return(0);
494 if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
495 paxwarn(1, "Cannot allocate memory for interactive rename table");
496 return(-1);
497 }
498 return(0);
499 }
500
501 /*
502 * add_name()
503 * add the new name to old name mapping just created by the user.
504 * If an old name mapping is found (there may be duplicate names on an
505 * archive) only the most recent is kept.
506 * Return:
507 * 0 if added, -1 otherwise
508 */
509
510 int
511 add_name(char *oname, int onamelen, char *nname)
512 {
513 NAMT *pt;
514 u_int indx;
515
516 if (ntab == NULL) {
517 /*
518 * should never happen
519 */
520 paxwarn(0, "No interactive rename table, links may fail");
521 return(0);
522 }
523
524 /*
525 * look to see if we have already mapped this file, if so we
526 * will update it
527 */
528 indx = st_hash(oname, onamelen, N_TAB_SZ);
529 if ((pt = ntab[indx]) != NULL) {
530 /*
531 * look down the has chain for the file
532 */
533 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
534 pt = pt->fow;
535
536 if (pt != NULL) {
537 /*
538 * found an old mapping, replace it with the new one
539 * the user just input (if it is different)
540 */
541 if (strcmp(nname, pt->nname) == 0)
542 return(0);
543
544 (void)free((char *)pt->nname);
545 if ((pt->nname = strdup(nname)) == NULL) {
546 paxwarn(1, "Cannot update rename table");
547 return(-1);
548 }
549 return(0);
550 }
551 }
552
553 /*
554 * this is a new mapping, add it to the table
555 */
556 if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
557 if ((pt->oname = strdup(oname)) != NULL) {
558 if ((pt->nname = strdup(nname)) != NULL) {
559 pt->fow = ntab[indx];
560 ntab[indx] = pt;
561 return(0);
562 }
563 (void)free((char *)pt->oname);
564 }
565 (void)free((char *)pt);
566 }
567 paxwarn(1, "Interactive rename table out of memory");
568 return(-1);
569 }
570
571 /*
572 * sub_name()
573 * look up a link name to see if it points at a file that has been
574 * remapped by the user. If found, the link is adjusted to contain the
575 * new name (oname is the link to name)
576 */
577
578 void
579 sub_name(char *oname, int *onamelen, size_t onamesize)
580 {
581 NAMT *pt;
582 u_int indx;
583
584 if (ntab == NULL)
585 return;
586 /*
587 * look the name up in the hash table
588 */
589 indx = st_hash(oname, *onamelen, N_TAB_SZ);
590 if ((pt = ntab[indx]) == NULL)
591 return;
592
593 while (pt != NULL) {
594 /*
595 * walk down the hash chain looking for a match
596 */
597 if (strcmp(oname, pt->oname) == 0) {
598 /*
599 * found it, replace it with the new name
600 * and return (we know that oname has enough space)
601 */
602 *onamelen = strlcpy(oname, pt->nname, onamesize);
603 if ((size_t)*onamelen >= onamesize)
604 *onamelen = onamesize - 1; /* XXX truncate? */
605 return;
606 }
607 pt = pt->fow;
608 }
609
610 /*
611 * no match, just return
612 */
613 return;
614 }
615
616 /*
617 * device/inode mapping table routines
618 * (used with formats that store device and inodes fields)
619 *
620 * device/inode mapping tables remap the device field in a archive header. The
621 * device/inode fields are used to determine when files are hard links to each
622 * other. However these values have very little meaning outside of that. This
623 * database is used to solve one of two different problems.
624 *
625 * 1) when files are appended to an archive, while the new files may have hard
626 * links to each other, you cannot determine if they have hard links to any
627 * file already stored on the archive from a prior run of pax. We must assume
628 * that these inode/device pairs are unique only within a SINGLE run of pax
629 * (which adds a set of files to an archive). So we have to make sure the
630 * inode/dev pairs we add each time are always unique. We do this by observing
631 * while the inode field is very dense, the use of the dev field is fairly
632 * sparse. Within each run of pax, we remap any device number of a new archive
633 * member that has a device number used in a prior run and already stored in a
634 * file on the archive. During the read phase of the append, we store the
635 * device numbers used and mark them to not be used by any file during the
636 * write phase. If during write we go to use one of those old device numbers,
637 * we remap it to a new value.
638 *
639 * 2) Often the fields in the archive header used to store these values are
640 * too small to store the entire value. The result is an inode or device value
641 * which can be truncated. This really can foul up an archive. With truncation
642 * we end up creating links between files that are really not links (after
643 * truncation the inodes are the same value). We address that by detecting
644 * truncation and forcing a remap of the device field to split truncated
645 * inodes away from each other. Each truncation creates a pattern of bits that
646 * are removed. We use this pattern of truncated bits to partition the inodes
647 * on a single device to many different devices (each one represented by the
648 * truncated bit pattern). All inodes on the same device that have the same
649 * truncation pattern are mapped to the same new device. Two inodes that
650 * truncate to the same value clearly will always have different truncation
651 * bit patterns, so they will be split from away each other. When we spot
652 * device truncation we remap the device number to a non truncated value.
653 * (for more info see table.h for the data structures involved).
654 */
655
656 /*
657 * dev_start()
658 * create the device mapping table
659 * Return:
660 * 0 if successful, -1 otherwise
661 */
662
663 int
664 dev_start(void)
665 {
666 if (dtab != NULL)
667 return(0);
668 if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
669 paxwarn(1, "Cannot allocate memory for device mapping table");
670 return(-1);
671 }
672 return(0);
673 }
674
675 /*
676 * add_dev()
677 * add a device number to the table. this will force the device to be
678 * remapped to a new value if it be used during a write phase. This
679 * function is called during the read phase of an append to prohibit the
680 * use of any device number already in the archive.
681 * Return:
682 * 0 if added ok, -1 otherwise
683 */
684
685 int
686 add_dev(ARCHD *arcn)
687 {
688 if (chk_dev(arcn->sb.st_dev, 1) == NULL)
689 return(-1);
690 return(0);
691 }
692
693 /*
694 * chk_dev()
695 * check for a device value in the device table. If not found and the add
696 * flag is set, it is added. This does NOT assign any mapping values, just
697 * adds the device number as one that need to be remapped. If this device
698 * is already mapped, just return with a pointer to that entry.
699 * Return:
700 * pointer to the entry for this device in the device map table. Null
701 * if the add flag is not set and the device is not in the table (it is
702 * not been seen yet). If add is set and the device cannot be added, null
703 * is returned (indicates an error).
704 */
705
706 static DEVT *
707 chk_dev(dev_t dev, int add)
708 {
709 DEVT *pt;
710 u_int indx;
711
712 if (dtab == NULL)
713 return(NULL);
714 /*
715 * look to see if this device is already in the table
716 */
717 indx = ((unsigned)dev) % D_TAB_SZ;
718 if ((pt = dtab[indx]) != NULL) {
719 while ((pt != NULL) && (pt->dev != dev))
720 pt = pt->fow;
721
722 /*
723 * found it, return a pointer to it
724 */
725 if (pt != NULL)
726 return(pt);
727 }
728
729 /*
730 * not in table, we add it only if told to as this may just be a check
731 * to see if a device number is being used.
732 */
733 if (add == 0)
734 return(NULL);
735
736 /*
737 * allocate a node for this device and add it to the front of the hash
738 * chain. Note we do not assign remaps values here, so the pt->list
739 * list must be NULL.
740 */
741 if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
742 paxwarn(1, "Device map table out of memory");
743 return(NULL);
744 }
745 pt->dev = dev;
746 pt->list = NULL;
747 pt->fow = dtab[indx];
748 dtab[indx] = pt;
749 return(pt);
750 }
751 /*
752 * map_dev()
753 * given an inode and device storage mask (the mask has a 1 for each bit
754 * the archive format is able to store in a header), we check for inode
755 * and device truncation and remap the device as required. Device mapping
756 * can also occur when during the read phase of append a device number was
757 * seen (and was marked as do not use during the write phase). WE ASSUME
758 * that unsigned longs are the same size or bigger than the fields used
759 * for ino_t and dev_t. If not the types will have to be changed.
760 * Return:
761 * 0 if all ok, -1 otherwise.
762 */
763
764 int
765 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
766 {
767 DEVT *pt;
768 DLIST *dpt;
769 static dev_t lastdev = 0; /* next device number to try */
770 int trc_ino = 0;
771 int trc_dev = 0;
772 ino_t trunc_bits = 0;
773 ino_t nino;
774
775 if (dtab == NULL)
776 return(0);
777 /*
778 * check for device and inode truncation, and extract the truncated
779 * bit pattern.
780 */
781 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
782 ++trc_dev;
783 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
784 ++trc_ino;
785 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
786 }
787
788 /*
789 * see if this device is already being mapped, look up the device
790 * then find the truncation bit pattern which applies
791 */
792 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
793 /*
794 * this device is already marked to be remapped
795 */
796 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
797 if (dpt->trunc_bits == trunc_bits)
798 break;
799
800 if (dpt != NULL) {
801 /*
802 * we are being remapped for this device and pattern
803 * change the device number to be stored and return
804 */
805 arcn->sb.st_dev = dpt->dev;
806 arcn->sb.st_ino = nino;
807 return(0);
808 }
809 } else {
810 /*
811 * this device is not being remapped YET. if we do not have any
812 * form of truncation, we do not need a remap
813 */
814 if (!trc_ino && !trc_dev)
815 return(0);
816
817 /*
818 * we have truncation, have to add this as a device to remap
819 */
820 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
821 goto bad;
822
823 /*
824 * if we just have a truncated inode, we have to make sure that
825 * all future inodes that do not truncate (they have the
826 * truncation pattern of all 0's) continue to map to the same
827 * device number. We probably have already written inodes with
828 * this device number to the archive with the truncation
829 * pattern of all 0's. So we add the mapping for all 0's to the
830 * same device number.
831 */
832 if (!trc_dev && (trunc_bits != 0)) {
833 if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
834 goto bad;
835 dpt->trunc_bits = 0;
836 dpt->dev = arcn->sb.st_dev;
837 dpt->fow = pt->list;
838 pt->list = dpt;
839 }
840 }
841
842 /*
843 * look for a device number not being used. We must watch for wrap
844 * around on lastdev (so we do not get stuck looking forever!)
845 */
846 while (++lastdev > 0) {
847 if (chk_dev(lastdev, 0) != NULL)
848 continue;
849 /*
850 * found an unused value. If we have reached truncation point
851 * for this format we are hosed, so we give up. Otherwise we
852 * mark it as being used.
853 */
854 if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
855 (chk_dev(lastdev, 1) == NULL))
856 goto bad;
857 break;
858 }
859
860 if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
861 goto bad;
862
863 /*
864 * got a new device number, store it under this truncation pattern.
865 * change the device number this file is being stored with.
866 */
867 dpt->trunc_bits = trunc_bits;
868 dpt->dev = lastdev;
869 dpt->fow = pt->list;
870 pt->list = dpt;
871 arcn->sb.st_dev = lastdev;
872 arcn->sb.st_ino = nino;
873 return(0);
874
875 bad:
876 paxwarn(1, "Unable to fix truncated inode/device field when storing %s",
877 arcn->name);
878 paxwarn(0, "Archive may create improper hard links when extracted");
879 return(0);
880 }
881
882 /*
883 * directory access/mod time reset table routines (for directories READ by pax)
884 *
885 * The pax -t flag requires that access times of archive files be the same
886 * before being read by pax. For regular files, access time is restored after
887 * the file has been copied. This database provides the same functionality for
888 * directories read during file tree traversal. Restoring directory access time
889 * is more complex than files since directories may be read several times until
890 * all the descendants in their subtree are visited by fts. Directory access
891 * and modification times are stored during the fts pre-order visit (done
892 * before any descendants in the subtree are visited) and restored after the
893 * fts post-order visit (after all the descendants have been visited). In the
894 * case of premature exit from a subtree (like from the effects of -n), any
895 * directory entries left in this database are reset during final cleanup
896 * operations of pax. Entries are hashed by inode number for fast lookup.
897 */
898
899 /*
900 * atdir_start()
901 * create the directory access time database for directories READ by pax.
902 * Return:
903 * 0 is created ok, -1 otherwise.
904 */
905
906 int
907 atdir_start(void)
908 {
909 if (atab != NULL)
910 return(0);
911 if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
912 paxwarn(1,"Cannot allocate space for directory access time table");
913 return(-1);
914 }
915 return(0);
916 }
917
918
919 /*
920 * atdir_end()
921 * walk through the directory access time table and reset the access time
922 * of any directory who still has an entry left in the database. These
923 * entries are for directories READ by pax
924 */
925
926 void
927 atdir_end(void)
928 {
929 ATDIR *pt;
930 int i;
931
932 if (atab == NULL)
933 return;
934 /*
935 * for each non-empty hash table entry reset all the directories
936 * chained there.
937 */
938 for (i = 0; i < A_TAB_SZ; ++i) {
939 if ((pt = atab[i]) == NULL)
940 continue;
941 /*
942 * remember to force the times, set_ftime() looks at pmtime
943 * and patime, which only applies to things CREATED by pax,
944 * not read by pax. Read time reset is controlled by -t.
945 */
946 for (; pt != NULL; pt = pt->fow)
947 set_ftime(pt->name, pt->mtime, pt->atime, 1);
948 }
949 }
950
951 /*
952 * add_atdir()
953 * add a directory to the directory access time table. Table is hashed
954 * and chained by inode number. This is for directories READ by pax
955 */
956
957 void
958 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
959 {
960 ATDIR *pt;
961 u_int indx;
962
963 if (atab == NULL)
964 return;
965
966 /*
967 * make sure this directory is not already in the table, if so just
968 * return (the older entry always has the correct time). The only
969 * way this will happen is when the same subtree can be traversed by
970 * different args to pax and the -n option is aborting fts out of a
971 * subtree before all the post-order visits have been made.
972 */
973 indx = ((unsigned)ino) % A_TAB_SZ;
974 if ((pt = atab[indx]) != NULL) {
975 while (pt != NULL) {
976 if ((pt->ino == ino) && (pt->dev == dev))
977 break;
978 pt = pt->fow;
979 }
980
981 /*
982 * oops, already there. Leave it alone.
983 */
984 if (pt != NULL)
985 return;
986 }
987
988 /*
989 * add it to the front of the hash chain
990 */
991 if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
992 if ((pt->name = strdup(fname)) != NULL) {
993 pt->dev = dev;
994 pt->ino = ino;
995 pt->mtime = mtime;
996 pt->atime = atime;
997 pt->fow = atab[indx];
998 atab[indx] = pt;
999 return;
1000 }
1001 (void)free((char *)pt);
1002 }
1003
1004 paxwarn(1, "Directory access time reset table ran out of memory");
1005 return;
1006 }
1007
1008 /*
1009 * get_atdir()
1010 * look up a directory by inode and device number to obtain the access
1011 * and modification time you want to set to. If found, the modification
1012 * and access time parameters are set and the entry is removed from the
1013 * table (as it is no longer needed). These are for directories READ by
1014 * pax
1015 * Return:
1016 * 0 if found, -1 if not found.
1017 */
1018
1019 int
1020 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1021 {
1022 ATDIR *pt;
1023 ATDIR **ppt;
1024 u_int indx;
1025
1026 if (atab == NULL)
1027 return(-1);
1028 /*
1029 * hash by inode and search the chain for an inode and device match
1030 */
1031 indx = ((unsigned)ino) % A_TAB_SZ;
1032 if ((pt = atab[indx]) == NULL)
1033 return(-1);
1034
1035 ppt = &(atab[indx]);
1036 while (pt != NULL) {
1037 if ((pt->ino == ino) && (pt->dev == dev))
1038 break;
1039 /*
1040 * no match, go to next one
1041 */
1042 ppt = &(pt->fow);
1043 pt = pt->fow;
1044 }
1045
1046 /*
1047 * return if we did not find it.
1048 */
1049 if (pt == NULL)
1050 return(-1);
1051
1052 /*
1053 * found it. return the times and remove the entry from the table.
1054 */
1055 *ppt = pt->fow;
1056 *mtime = pt->mtime;
1057 *atime = pt->atime;
1058 (void)free((char *)pt->name);
1059 (void)free((char *)pt);
1060 return(0);
1061 }
1062
1063 /*
1064 * directory access mode and time storage routines (for directories CREATED
1065 * by pax).
1066 *
1067 * Pax requires that extracted directories, by default, have their access/mod
1068 * times and permissions set to the values specified in the archive. During the
1069 * actions of extracting (and creating the destination subtree during -rw copy)
1070 * directories extracted may be modified after being created. Even worse is
1071 * that these directories may have been created with file permissions which
1072 * prohibits any descendants of these directories from being extracted. When
1073 * directories are created by pax, access rights may be added to permit the
1074 * creation of files in their subtree. Every time pax creates a directory, the
1075 * times and file permissions specified by the archive are stored. After all
1076 * files have been extracted (or copied), these directories have their times
1077 * and file modes reset to the stored values. The directory info is restored in
1078 * reverse order as entries were added to the data file from root to leaf. To
1079 * restore atime properly, we must go backwards. The data file consists of
1080 * records with two parts, the file name followed by a DIRDATA trailer. The
1081 * fixed sized trailer contains the size of the name plus the off_t location in
1082 * the file. To restore we work backwards through the file reading the trailer
1083 * then the file name.
1084 */
1085
1086 /*
1087 * dir_start()
1088 * set up the directory time and file mode storage for directories CREATED
1089 * by pax.
1090 * Return:
1091 * 0 if ok, -1 otherwise
1092 */
1093
1094 int
1095 dir_start(void)
1096 {
1097 if (dirp != NULL)
1098 return(0);
1099
1100 dirsize = DIRP_SIZE;
1101 if ((dirp = calloc(dirsize, sizeof(DIRDATA))) == NULL) {
1102 paxwarn(1, "Unable to allocate memory for directory times");
1103 return(-1);
1104 }
1105 return(0);
1106 }
1107
1108 /*
1109 * add_dir()
1110 * add the mode and times for a newly CREATED directory
1111 * name is name of the directory, psb the stat buffer with the data in it,
1112 * frc_mode is a flag that says whether to force the setting of the mode
1113 * (ignoring the user set values for preserving file mode). Frc_mode is
1114 * for the case where we created a file and found that the resulting
1115 * directory was not writeable and the user asked for file modes to NOT
1116 * be preserved. (we have to preserve what was created by default, so we
1117 * have to force the setting at the end. this is stated explicitly in the
1118 * pax spec)
1119 */
1120
1121 void
1122 add_dir(char *name, struct stat *psb, int frc_mode)
1123 {
1124 DIRDATA *dblk;
1125 char realname[MAXPATHLEN], *rp;
1126
1127 if (dirp == NULL)
1128 return;
1129
1130 if (havechd && *name != '/') {
1131 if ((rp = realpath(name, realname)) == NULL) {
1132 paxwarn(1, "Cannot canonicalize %s", name);
1133 return;
1134 }
1135 name = rp;
1136 }
1137 if (dircnt == (long)dirsize) {
1138 dblk = realloc(dirp, 2 * dirsize * sizeof(DIRDATA));
1139 if (dblk == NULL) {
1140 paxwarn(1, "Unable to store mode and times for created"
1141 " directory: %s", name);
1142 return;
1143 }
1144 dirp = dblk;
1145 dirsize *= 2;
1146 }
1147 dblk = &dirp[dircnt];
1148 if ((dblk->name = strdup(name)) == NULL) {
1149 paxwarn(1, "Unable to store mode and times for created"
1150 " directory: %s", name);
1151 return;
1152 }
1153 dblk->mode = psb->st_mode & 0xffff;
1154 dblk->mtime = psb->st_mtime;
1155 dblk->atime = psb->st_atime;
1156 dblk->frc_mode = frc_mode;
1157 ++dircnt;
1158 }
1159
1160 /*
1161 * proc_dir()
1162 * process all file modes and times stored for directories CREATED
1163 * by pax
1164 */
1165
1166 void
1167 proc_dir(void)
1168 {
1169 DIRDATA *dblk;
1170 long cnt;
1171
1172 if (dirp == NULL)
1173 return;
1174 /*
1175 * read backwards through the file and process each directory
1176 */
1177 cnt = dircnt;
1178 while (--cnt >= 0) {
1179 /*
1180 * frc_mode set, make sure we set the file modes even if
1181 * the user didn't ask for it (see file_subs.c for more info)
1182 */
1183 dblk = &dirp[cnt];
1184 if (pmode || dblk->frc_mode)
1185 set_pmode(dblk->name, dblk->mode);
1186 if (patime || pmtime)
1187 set_ftime(dblk->name, dblk->mtime, dblk->atime, 0);
1188 free(dblk->name);
1189 }
1190
1191 free(dirp);
1192 dirp = NULL;
1193 dircnt = 0;
1194 }
1195
1196 /*
1197 * database independent routines
1198 */
1199
1200 /*
1201 * st_hash()
1202 * hashes filenames to a u_int for hashing into a table. Looks at the tail
1203 * end of file, as this provides far better distribution than any other
1204 * part of the name. For performance reasons we only care about the last
1205 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1206 * name). Was tested on 500,000 name file tree traversal from the root
1207 * and gave almost a perfectly uniform distribution of keys when used with
1208 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1209 * chars at a time and pads with 0 for last addition.
1210 * Return:
1211 * the hash value of the string MOD (%) the table size.
1212 */
1213
1214 u_int
1215 st_hash(const char *name, int len, int tabsz)
1216 {
1217 const char *pt;
1218 char *dest;
1219 const char *end;
1220 int i;
1221 u_int key = 0;
1222 int steps;
1223 int res;
1224 u_int val;
1225
1226 /*
1227 * only look at the tail up to MAXKEYLEN, we do not need to waste
1228 * time here (remember these are pathnames, the tail is what will
1229 * spread out the keys)
1230 */
1231 if (len > MAXKEYLEN) {
1232 pt = &(name[len - MAXKEYLEN]);
1233 len = MAXKEYLEN;
1234 } else
1235 pt = name;
1236
1237 /*
1238 * calculate the number of u_int size steps in the string and if
1239 * there is a runt to deal with
1240 */
1241 steps = len/sizeof(u_int);
1242 res = len % sizeof(u_int);
1243
1244 /*
1245 * add up the value of the string in unsigned integer sized pieces
1246 * too bad we cannot have unsigned int aligned strings, then we
1247 * could avoid the expensive copy.
1248 */
1249 for (i = 0; i < steps; ++i) {
1250 end = pt + sizeof(u_int);
1251 dest = (char *)&val;
1252 while (pt < end)
1253 *dest++ = *pt++;
1254 key += val;
1255 }
1256
1257 /*
1258 * add in the runt padded with zero to the right
1259 */
1260 if (res) {
1261 val = 0;
1262 end = pt + res;
1263 dest = (char *)&val;
1264 while (pt < end)
1265 *dest++ = *pt++;
1266 key += val;
1267 }
1268
1269 /*
1270 * return the result mod the table size
1271 */
1272 return(key % tabsz);
1273 }
1274
1275 /* Forward hard link anonymisation routines */
1276
1277 /*
1278 * flnk_start
1279 * Creates the hard link table.
1280 * Return:
1281 * 0 if created, -1 if failure
1282 */
1283
1284 int
1285 flnk_start(void)
1286 {
1287 if (fltab != NULL)
1288 return (0);
1289 if ((fltab = (HRDFLNK **)calloc(L_TAB_SZ, sizeof(HRDFLNK *))) == NULL) {
1290 paxwarn(1, "Cannot allocate memory for hard link table");
1291 return (-1);
1292 }
1293 return (0);
1294 }
1295
1296 /*
1297 * chk_flnk()
1298 * Looks up entry in hard link hash table. If found, it copies the name
1299 * of the file it is linked to (we already saw that file) into ln_name.
1300 * lnkcnt is decremented and if goes to 1 the node is deleted from the
1301 * database. (We have seen all the links to this file). If not found,
1302 * we add the file to the database if it has the potential for having
1303 * hard links to other files we may process (it has a link count > 1)
1304 * Return:
1305 * if found returns the new inode number; -1 on error
1306 */
1307
1308 int
1309 chk_flnk(ARCHD *arcn)
1310 {
1311 HRDFLNK *pt;
1312 HRDFLNK **ppt;
1313 u_int indx;
1314 static ino_t running = 3;
1315
1316 if (fltab == NULL)
1317 return (-1);
1318 /*
1319 * ignore those nodes that cannot have hard links
1320 */
1321 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
1322 return (running++);
1323
1324 /*
1325 * hash inode number and look for this file
1326 */
1327 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
1328 if ((pt = fltab[indx]) != NULL) {
1329 /*
1330 * it's hash chain in not empty, walk down looking for it
1331 */
1332 ppt = &(fltab[indx]);
1333 while (pt != NULL) {
1334 if ((pt->ino == arcn->sb.st_ino) &&
1335 (pt->dev == arcn->sb.st_dev))
1336 break;
1337 ppt = &(pt->fow);
1338 pt = pt->fow;
1339 }
1340
1341 if (pt != NULL) {
1342 /* found a link */
1343 ino_t rv = pt->newi;
1344 /* so cpio doesn't write file data twice */
1345 arcn->type |= PAX_LINKOR;
1346 /*
1347 * if we have found all the links to this file, remove
1348 * it from the database
1349 */
1350 if (--pt->nlink <= 1) {
1351 *ppt = pt->fow;
1352 (void)free((char *)pt);
1353 }
1354 return (rv);
1355 }
1356 }
1357
1358 /*
1359 * we never saw this file before. It has links so we add it to the
1360 * front of this hash chain
1361 */
1362 if ((pt = (HRDFLNK *)malloc(sizeof(HRDFLNK))) != NULL) {
1363 pt->dev = arcn->sb.st_dev;
1364 pt->ino = arcn->sb.st_ino;
1365 pt->nlink = arcn->sb.st_nlink;
1366 pt->fow = fltab[indx];
1367 pt->newi = running++;
1368 fltab[indx] = pt;
1369 return (pt->newi);
1370 }
1371
1372 paxwarn(1, "Hard link table out of memory");
1373 return (-1);
1374 }

root@freewrt.org:443
ViewVC Help
Powered by ViewVC 1.1.20